Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Light Sci Appl ; 13(1): 92, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38641636

Tunable optical materials are indispensable elements in modern optoelectronics, especially in integrated photonics circuits where precise control over the effective refractive index is essential for diverse applications. Two-dimensional materials like transition metal dichalcogenides (TMDs) and graphene exhibit remarkable optical responses to external stimuli. However, achieving distinctive modulation across short-wave infrared (SWIR) regions while enabling precise phase control at low signal loss within a compact footprint remains an ongoing challenge. In this work, we unveil the robust electro-refractive response of multilayer ferroionic two-dimensional CuCrP2S6 (CCPS) in the near-infrared wavelength range. By integrating CCPS into silicon photonics (SiPh) microring resonators (MRR), we enhance light-matter interaction and measurement sensitivity to minute phase and absorption variations. Results show that electrically driven Cu ions can tune the effective refractive index on the order of 2.8 × 10-3 RIU (refractive index unit) while preserving extinction ratios and resonance linewidth. Notably, these devices exhibit low optical losses and excellent modulation efficiency of 0.25 V.cm with a consistent blue shift in the resonance wavelengths among all devices for either polarity of the applied voltage. These results outperform earlier findings on phase shifters based on TMDs. Furthermore, our study demonstrates distinct variations in electro-optic tuning sensitivity when comparing transverse electric (TE) and transverse magnetic (TM) modes, revealing a polarization-dependent response that paves the way for diverse applications in light manipulation. The combined optoelectronic and ionotronic capabilities of two-terminal CCPS devices present extensive opportunities across several domains. Their potential applications range from phased arrays and optical switching to their use in environmental sensing and metrology, optical imaging systems, and neuromorphic systems in light-sensitive artificial synapses.

2.
Nat Commun ; 14(1): 5751, 2023 Sep 16.
Article En | MEDLINE | ID: mdl-37717049

The growing freshwater scarcity has caused increased use of membrane desalination of seawater as a relatively sustainable technology that promises to provide long-term solution for the increasingly water-stressed world. However, the currently used membranes for desalination on an industrial scale are inevitably prone to fouling that results in decreased flux and necessity for periodic chemical cleaning, and incur unacceptably high energy cost while also leaving an environmental footprint with unforeseeable long-term consequences. This extant problem requires an immediate shift to smart separation approaches with self-cleaning capability for enhanced efficiency and prolonged operational lifetime. Here, we describe a conceptually innovative approach to the design of smart membranes where a dynamic functionality is added to the surface layer of otherwise static membranes by incorporating stimuli-responsive organic crystals. We demonstrate a gating effect in the resulting smart dynamic membranes, whereby mechanical instability caused by rapid mechanical response of the crystals to heating slightly above room temperature activates the membrane and effectively removes the foulants, thereby increasing the mass transfer and extending its operational lifetime. The approach proposed here sets a platform for the development of a variety of energy-efficient hybrid membranes for water desalination and other separation processes that are devoid of fouling issues and circumvents the necessity of chemical cleaning operations.

3.
Opt Express ; 30(10): 15986-15997, 2022 May 09.
Article En | MEDLINE | ID: mdl-36221452

The outstanding performance and facile processability turn two-dimensional materials (2DMs) into the most sought-after class of semiconductors for optoelectronics applications. Yet, significant progress has been made toward the hybrid integration of these materials on silicon photonics (SiPh) platforms for a wide range of mid-infrared (MIR) applications. However, realizing 2D materials with a strong optical response in the NIR-MIR and excellent air stability is still a long-term goal. Here, we report a waveguide integrated photodetector based on a novel 2D GeP. This material uniquely combines narrow and wide tunable bandgap energies (0.51-1.68 eV), offering a broadband operation from visible to MIR spectral range. In a significant advantage over graphene devices, hybrid Si/GeP waveguide photodetectors work under bias with a low dark current of few nano-amps and demonstrate excellent stability and reproducibility. Additionally, 65 nm thick GeP devices integrated on silicon waveguides exhibit a remarkable photoresponsivity of 0.54 A/W and attain high external quantum efficiency of ∼ 51.3% under 1310 nm light and at room temperature. Furthermore, a measured absorption coefficient of 1.54 ± 0.3 dB/µm at 1310 nm suggests the potential of 2D GeP as an alternative infrared material with broad optical tunability and dynamic stability suitable for advanced optoelectronic integration.

4.
Nat Commun ; 13(1): 2823, 2022 May 20.
Article En | MEDLINE | ID: mdl-35595845

Dynamic organic crystals are rapidly gaining traction as a new class of smart materials for energy conversion, however, they are only capable of very small strokes (<12%) and most of them operate through energetically cost-prohibitive processes at high temperatures. We report on the exceptional performance of an organic actuating material with exceedingly large stroke that can reversibly convert energy into work around room temperature. When transitioning at 295-305 K on heating and at 265-275 K on cooling the ferroelectric crystals of guanidinium nitrate exert a linear stroke of 51%, the highest value observed with a reversible operation of an organic single crystal actuator. Their maximum force density is higher than electric cylinders, ceramic piezoactuators, and electrostatic actuators, and their work capacity is close to that of thermal actuators. This work demonstrates the hitherto untapped potential of ionic organic crystals for applications such as light-weight capacitors, dielectrics, ferroelectric tunnel junctions, and thermistors.

5.
Adv Mater ; 34(19): e2109374, 2022 May.
Article En | MEDLINE | ID: mdl-35234306

The outstanding performance and facile processability turn hybrid organic-inorganic perovskites into one of the most sought-after classes of semiconducting materials for optoelectronics. Yet, their translation into real-world applications necessitates that challenges with their chemical stability and poor mechanical robustness are first addressed. Here, centimeter-size single crystals of methylammoniumlead(II) iodide (MAPbI3 ) are reported to be capable of autonomous self-healing under minimal compression at ambient temperature. When crystals are halved and the fragments are brought in contact, they can readily self-repair as a result of a liquid-like behavior of their lattice at the contact surface, which leads to a remarkable healing with an efficiency of up to 82%. The successful reconstitution of the broken single crystals is reflected in recuperation of their optoelectronic properties. Testing of the healed crystals as photodetectors shows an impressive 74% recovery of the generated photocurrent relative to pristine crystals. This self-healing capability of MAPbI3 single crystals is an efficient strategy to overcome the poor mechanical properties and low wear resistance of these materials, and paves the way for durable and stable optoelectronic devices based on single crystals of hybrid perovskites.

6.
Opt Express ; 29(24): 39395-39405, 2021 Nov 22.
Article En | MEDLINE | ID: mdl-34809305

Recent theoretical studies proposed that two-dimensional (2D) GaGeTe crystals have promising high detection sensitivity at infrared wavelengths and can offer ultra-fast operation. This can be attributed to their small optical bandgap and high carrier mobility. However, experimental studies on GaGeTe in the infrared region are lacking and this exciting property has not been explored yet. In this work, we demonstrate a short-wavelength infrared (SWIR) photodetector based on a multilayer (ML) GaGeTe field-effect transistor (FET). Fabricated devices show a p-type behavior at room temperature with a hole field-effect mobility of 8.6 - 20 cm2 V-1s-1. Notably, under 1310 nm illumination, the photo responsivities and noise equivalent power of the detectors with 65 nm flake thickness can reach up to 57 A/W and 0.1 nW/Hz1/2, respectively, at a drain-source bias (Vds) = 2 V. The frequency responses of the photodetectors were also measured with a 1310 nm intensity-modulated light. Devices exhibit a response up to 100 MHz with a 3dB cut-off frequency of 0.9 MHz. Furthermore, we also tested the dependence of the device frequency response on the applied bias and gate voltages. These early experimental findings stimulate the potential use of multilayer GaGeTe for highly sensitive and ultrafast photodetection applications.

7.
Angew Chem Int Ed Engl ; 60(50): 26151-26157, 2021 Dec 06.
Article En | MEDLINE | ID: mdl-34570413

We report the first organic semiconductor crystal with a unique combination of properties that can be used as a multifunctional optoelectronic device. Mechanically flexible single crystals of 9,10-bis(phenylethynyl)anthracene (BPEA) can function as a phototransistor, photoswitch, and an optical waveguide. The material can exist as two structurally different solid phases, with single crystals of one of the phases being elastic at room temperature while those of the other are brittle and become plastic at higher temperature. The output and transfer characteristics of the devices were characterized by measuring the generation and temporal response of the switching of the photogenerated current. The current-voltage characteristics of both phases exhibit linearity and symmetry about the positive and negative voltages. The crystals transmit light in the telecommunications range with significantly low optical loss for an organic crystalline material.

8.
ACS Appl Mater Interfaces ; 13(18): 21499-21506, 2021 May 12.
Article En | MEDLINE | ID: mdl-33934599

Novel group IV - V 2D semiconductors (e.g., GeAs and SiAs) have arisen as an attractive candidate for broad-band photodetection and optoelectronic applications. This 2D family has a wide tunable band gap, excellent thermodynamic stability, and strong in-plane anisotropy. However, their photonic and optoelectronic properties have not been extensively explored so far. This work demonstrates a broadband back-to-back metal-semiconductor-metal (MSM) Schottky photodiode with asymmetric contact geometries based on multilayered 2D GeAs. The photodetector exhibited a Schottky barrier height (SBH) in the range of 0.40-0.49 eV. Additionally, it showed a low dark current of 1.8 nA with stable, reproducible, and excellent broadband spectral response from UV to optical communication wavelengths. The highest measured responsivity in the visible is 905 A/W at 660 nm wavelength and 98 A/W for 1064 nm near-infrared at an applied voltage of -3 V and zero back gate. Most notably, the planner configuration of this GeAs photodetector showed a low detector capacitance below 1.2 pf and low voltage operation (<1 V). The stability and broadband response of the device are promising for this 2D material's application in advanced optoelectronic devices.

9.
Opt Express ; 29(6): 9419-9428, 2021 Mar 15.
Article En | MEDLINE | ID: mdl-33820370

Layered two-dimensional (2D) materials with broadband photodetection capability have tremendous potential in the design and engineering of future optoelectronics devices. To date, studies of 2D semiconductors are actively focused on graphene, black phosphorus, and black arsenic phosphorus as attractive candidates. So far, however, novel group IV-V 2D semiconductors (e.g., GeAs and SiAs) have not been extensively explored for broad-band optoelectronics applications. Here, we report a high-performance multilayered 2D GeP gate-tunable photodetector that operates at a short-wavelength infrared (SWIR) regime. With a back-gate device geometry, a p-type behavior is observed at room temperature. Furthermore, a broadband spectral response from UV to optical communication wavelengths is detected. Under a nanowatt-level illumination, a peak responsivity of 25.5 A/W at λ = 1310 nm is achieved with detectivity of ∼ 1×1011 cm.Hz1/2.W-1 at a source-drain bias of -5 V and medium gate voltage bias of -30 V. Additionally, the devices show a relatively low dark current of 40-250 nA for device area in the range of 50-600 µm2 and excellent stability and reproducibility. Our work demonstrates the potential of 2D GeP as an alternative mid-infrared material with broad optical tunability suitable for optical communication and low-light-level detection applications.

10.
Nat Commun ; 12(1): 1326, 2021 02 26.
Article En | MEDLINE | ID: mdl-33637707

Organic crystals are emerging as mechanically compliant, light-weight and chemically versatile alternatives to the commonly used silica and polymer waveguides. However, the previously reported organic crystals were shown to be able to transmit visible light, whereas actual implementation in telecommunication devices requires transparency in the near-infrared spectral range. Here we demonstrate that single crystals of the amino acid L-threonine could be used as optical waveguides and filters with high mechanical and thermal robustness for transduction of signals in the telecommunications range. On their (00[Formula: see text]) face, crystals of this material have an extraordinarily high Young's modulus (40.95 ± 1.03 GPa) and hardness (1.98 ± 0.11 GPa) for an organic crystal. First-principles density functional theory calculations, used in conjunction with analysis of the energy frameworks to correlate the structure with the anisotropy in the Young's modulus, showed that the high stiffness arises as a consequence of the strong charge-assisted hydrogen bonds between the zwitterions. The crystals have low optical loss in the O, E, S and C bands of the spectrum (1250-1600 nm), while they effectively block infrared light below 1200 nm. This property favors these and possibly other related organic crystals as all-organic fiber-optic waveguides and filters for transduction of information.


Amino Acids/chemistry , Communication , Fiber Optic Technology/methods , Transducers , Anisotropy , Crystallization , Crystallography, X-Ray , Elastic Modulus , Hardness , Hydrogen Bonding , Threonine/chemistry
11.
Nanotechnology ; 31(31): 315201, 2020 Jul 31.
Article En | MEDLINE | ID: mdl-32303009

Strain engineering of germanium has recently attracted tremendous research interest. The primary goal of this approach is to exploit mechanical strain to tune the electrical and optical properties of Ge to ultimately achieve an on-chip light source compatible with silicon technology. Additionally, this can result in enhanced electrical performance for high-speed optoelectronic applications. In this paper, we demonstrate the formation of highly tensile-strained Ge islands grown on a pre-patterned (110) GaAs substrate using a depth controlled nanoindentation process. Results show that a biaxial tensile strain, up to ∼2%, can be transferred from the mechanically stamped substrate to Ge islands by optimizing the parameters of the nanoindentation process. We verified our measurements by observing the islands' photoluminescence (PL) emission properties. A strong emission at room-temperature was observed around the wavelength of 1.9 µm (650 meV). This strain-induced redshift of the PL spectra is consistent with theoretical predictions, revealing a direct Ge bandgap formation. Furthermore, we demonstrate a significant 6.5x enhancement in the PL emission signal of the direct-transition when the Ge islands are decorated by 5 nm gold nanoparticles. This is attributed to a longer optical path length interaction and a plasmonic induced high-field enhancement which increases the light absorption in the Ge islands. Furthermore, results show that GNPs can significantly modulate the energy band structure and the carrier's transportation at the nanoscale metal-germanium Schottky interface. This maskless physical approach can offer a pathway towards a practical CMOS-compatible integrated laser. Additionally, it opens possibilities for designing innovative optoelectronic devices.

12.
Sci Rep ; 9(1): 14221, 2019 Oct 02.
Article En | MEDLINE | ID: mdl-31578380

Low-dimensional semiconductor structurers formed on a substrate surface at pre-defined locations and with nano-precision placement is of vital interest. The potential of tailoring their electrical and optical properties will revolutionize the next generation of optoelectronic devices. Traditionally, highly aligned self-assembly of semiconductors relies on Stranski- Krastanov growth mode. In this work, we demonstrate a pathway towards ordered configuration of Ge islands on low lattice mismatch GaAs (110) substrate patterned using depth-controlled nanoindentation. Diamond probe tips with different geometries are used to nano-mechanically stamp the surface of GaAs (110). This creates nanoscale volumes of dislocation-mediated deformation which acts to bias nucleation. Results show that nanostamped GaAs exhibits selective-nucleation of Ge at the indent sites. Ge islands formed on a surface patterned using cube corner tip have height of ~10 nm and lateral size of ~225 nm. Larger islands are formed by using Vickers and Berkovich diamond tips (~400 nm). The strain state of the patterned structures is characterized by micro-Raman spectroscopy. A strain value up to 2% for all tip geometries has been obtained. Additionally, strong room temperature photoluminescence (PL) emission is observed around 1.9 µm (650 meV). The observed strain-induced enhancement in the light-emission efficiency is attributed to direct conduction to heavy-hole (cΓ-HH) and conduction to light-hole (cΓ-LH) transitions. The inherent simplicity of the proposed method offers an attractive technique to manufacture semiconductor quantum dot structures for future electronic and photonic applications.

13.
Sci Rep ; 9(1): 1593, 2019 Feb 07.
Article En | MEDLINE | ID: mdl-30733519

Thin Ge films directly grown on Si substrate using two-step low temperature growth technique are subjected to low load nano-indentation at room temperature. The nano-indentation is carried out using a Berkovich diamond tip (R ~ 20 nm). The residual impressions are studied using ex-situ Raman Micro-Spectroscopy, Atomic Force Microscopy combined system, and Transmission Electron Microscopy. The analysis of residual indentation impressions and displacement-load curves show evidence of deformation by phase transformation at room temperature under a critical pressure ranging from 4.9GPa-8.1GPa. Furthermore, the formation of additional Ge phases such as r8-Ge, hd-Ge, and amorphous Ge as a function of indentation depth have been realized. The inelastic deformation mechanism is found to depend critically on the indentation penetration depth. The non-uniform spatial distribution of the shear stress depends on the indentation depth and plays a crucial role in determining which phase is formed. Similarly, nano-indentation fracture response depends on indentation penetration depth. This opens the potential of tuning the contact response of Ge and other semiconductors thin films by varying indentation depth and indenter geometry. Furthermore, this observed effect can be reliably used to induce phase transformation in Ge-on-Si with technological interest as a narrow band gap material for mid-wavelength infrared detection.

14.
Opt Express ; 25(25): 32110-32119, 2017 Dec 11.
Article En | MEDLINE | ID: mdl-29245875

In this paper, germanium metal-semiconductor-metal photodetectors (MSM PDs) are fabricated on Si using a low-temperature two-step deposition technique by RF-PECVD. The photodetectors are optimized to effectively suppress the dark current through the insertion of n-type a-Si:H interlayer between the metal/Ge interface. Tuning the Schottky Barrier Height (SBH) by inserting different thickness of the interlayer is investigated. Results revealed that SBH for electrons and holes can effectively be enhanced by 0.3eV and 0.54eV, respectively. Furthermore, the dark-current (IDark) is suppressed significantly by more than four orders of magnitude. The measured IDark is ∼76 nA for an applied reverse bias of 1.0 V. Additionally, the Ge MSMs structure exhibited a photo responsivity of 0.8A/W at that bias. The proposed low-temperature (<550°C) Ge-on-Si MSM PD demonstrates a great potential for high-performance Ge-based photodetectors in monolithically integrated CMOS platform.

...